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1 Introduction

In the previous talk, we defined a version of pure motives using existing Weil cohomology theories (étale,
crystalline, de Rham, Betti). In this talk, we will take a different approach, and build our category of
motives from geometric objects. The basic building blocks of our category of motives will be smooth
projective varieties (not necessarily connected!) over our base field k. Of course, the category of smooth
projective varieties Vark is not abelian (or even additive), so we will have to do some modifications before
things work.

In particular, morphisms will not be given by morphisms f : X → Y but by correspondences α : X `
Y . These correspondences are (roughly) algebraic cycles living on X × Y and can be composed using
intersection theory (which will be reviewed in the next section). In particular, if f : X → Y , then the
graph of f will give us a correspondence Γf : Y ` X. Note the contravariance! This is because we are
trying to construct a universal cohomology theory, and cohomology theories are contravariant.

Correspondences are not just interesting because they provide us with an additive structure, they often in-
duce interesting maps on cohomology. For a number theoretical example, consider Hecke correspondences
on modular curves or more general Shimura varieties.

2 A crash course in intersection theory

In this section we let X be a smooth projective variety over a field k. We will discuss intersection theory
on X, following [EH16].

Definition 1. Let Zj(X) denote the free abelian group generated by irreducible reduced closed subschemes

of X of codimension j and let Z(X) =
⊕
j

Zj(X).

We want to define an intersection product of cycles, but in order to do this we need to be able to ’move’
cycles. Indeed, we would like to be able to make sense of the self intersection of cycles, which has no easy
naive definition. In order to fix this, we will relate cycles by ’algebraic homotopies’ parametrized by the
’unit interval’ P1.

Definition 2. Let Rat(X) ⊂ Z(X) be the subgroup generated by differences of the form

[Φ ∩ {t0} ×X]− [Φ ∩ {t1} ×X]
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where t0, t1 ∈ P1 and Φ is a subvariety of P1 ×X not contained in any fiber {x} ×X. We say that two
cycles are rationally equivalent if there difference is in Rat(X) and we define CH(X) = Z(X)/Rat(X).

Theorem 1 (Theorem 1.5 [EH16]). The Chow ring CH(X) is graded by codimension and there is a
unique product structure on CH(X) such that if A,B ⊂ X are closed subvarieties intersecting ’generically
transverse’, then

[A] · [B] = [A ∩B].

2.1 Functoriality

Let f : X → Y be a morphism of smooth projective varieties, then we expect there to be induced maps
on Chow groups. There is a pullback map f∗ : CH(Y )→ CH(X), which is a graded ring homomorphism.
It sends [A] to [f−1(A)] if A is generically transverse to f and this probably determines it uniquely.

Furthermore, there is a pushforward map f∗ : CH(X)→ CH(Y ) defined by

f∗[A] :=

{
0 if dim f(A) < dimA
n.[f(A)] if f

∣∣
A

has degree n
.

Pushforward and pullback are related by the push-pull formula

f∗(f
∗α · β) = α · f∗β.

We remark that pullback preserves the codimension of a cycle, while pushforward preserves the dimension
of a cycle.

2.2 Equivalence relations on cycles

So far we have defined the ideal Rat(X) ⊂ Z(X) of cycles rationally equivalent to zero, but we will also
need stronger equivalence relations. In particular, the Chow groups (with rational equivalence) can be
infinitely generated (is this ever a problem?).

Definition 3. Let H∗ be a Weil cohomology theory. Then the we define an ideal of cycles homologically
equivalent to zero as the kernel of the cycle map (this is given as part of the data of a Weil cohomology
theory, c.f. last week’s lecture).

ZHom(X) := ker (CH(X)⊗Q→ H∗(X)) .

Really, we are being sloppy with the notation here. From now on we only work with rational chow groups
and we redefine

CH(X) := CH(X)⊗Q.

The intersection pairing on cycles is not a nondegenerate pairing, and so one might want to quotient out
the kernel.

Definition 4. Let g ∈ CHj(X), then we call it numerically equivalent to zero if 〈f, g〉 = 0 for all
g ∈ CHdimX−j(X).
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2.3 Correspondences

In this section we fix an equivalence relation ∼ as in the previous section and we let A(X) =
⊕
j

Aj(X)

denote cycles modulo ∼.

Definition 5. Let X,Y be smooth projective varieties and assume that X has connected components
X1, · · · , Xn of dimensions xm, · · · , dm respectively. Then the group of correspondences of degree r from
X to Y is

Corrr(X,Y ) :=
m⊕
i=1

Adi+r(Xi × Y ).

If α ∈ Corrr(X,Y ) and β ∈ Corrs∼(Y,Z) then we define (it might be a useful exercise to figure out why
this recovers the usual composition of morphisms by intersections of their graphs)

α ◦ β =: p13,∗〈p∗12α, p
∗
23β〉 ∈ Corrr+s(X,Z),

where the morphisms p12, p13, p23 are the projection morphisms

X × Y × Z

X × Y Y × Z X × Z.
p12

p23
p13

In particular if X = Y = Z, then we get a ring structure on

Corr(X,X) = A(X ×X)

which is not the ring structure coming from the intersection theory. In particular, it might be noncom-
mutative (while the intersection pairing is not). Remark also that there is a subring Corr0(X,X) of
correspondences of degree 0.

If H∗ is a Weil cohomology theory, then we remark that

H∗(X × Y ) ∼= H∗(X)⊗H∗(Y )
∼= H∗(X)∨ ⊗H∗(Y )

= hom(H∗(X), H∗(Y ))

using Poincaré duality and the Künneth formula. This means that the cycle class map

CH(X × Y )→ H∗(X × Y )

gives an action of correspondences on cohomology. This is just a convoluted way of saying that corre-
spondences act on cohomology by pullback-cup product-pushforward. In particular, the map

Corr0(X,X)→ EndH∗(X)

is a ring homomorphism for all X.
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3 Definition

It is important to stress that the construction of the category of pure motives does not depend on any
(standard) conjecture. We will discuss the (conjectural) properties of this category later. We will build
the category of motives in three steps, starting from the category Vark of smooth projective varieties over
k. These steps are indicated in (1) below.

Vark → C∼Vark →Moteff
∼ (k) ↪−→Mot∼(k) (1)

1. Let C∼Vark be the category whose objects are smooth projective varieties and with hom(X,Y ) =
Corr0(X,Y ). This category is a Q-linear additive category, but is far from being abelian. In
particular, idempotents p do not necessarily have images and kernels. For example, consider the
cycle {x}×P1 on P1×P1, then one checks that this is an idempotent correspondence. Moreover, it
does not have an image since on cohomology it induces projection onto H2.

We can fix this in a ’universal’ way, i.e., we can take a pseudo-abelian completion.

2. Let Moteff
∼ (k) be the category whose objects are pairs

(X, p)

where X is a smooth projective variety and p ∈ Corr0
∼(X,X) is an idempotent correspondence.

Now morphisms are given by

hom ((X, p), (Y, q))) = qCorr0(X,Y )p;

Equivalently, they are given by correspondences α : X ` Y such that α ◦ p = α and q ◦ α = α,
composition is given as above.

If f is an idempotent endomorphism of (X, p), then one checks that

(X, p) = (X, pfp)⊕ (X, p− pfp)

gives us a decomposition of (X, p). Note that pfp = f per definition.

3. Let Mot∼(k) be the category whose objects are triples

(X, p,m)

where (X, p) as before and m ∈ Z (which should be thought of as a Tate twist).

hom ((X, p,m), (Y, q, n))) = qCorrn−m(X,Y )p;

equivalently again as those α : X ` Y such that α ◦ p = α and q ◦ α = α, composition is given as
above.

Remark 1. The functor from Vark →Mot∼(k) is given by

X 7→ (X, 1, 0)

and f : X → Y is mapped to Γf : (Y, id, 0) ` (X, id, 0).

Remark 2. There is a direct sum defined on objects by (at least if m = n, one has to work harder in
general)

(X, p,m)⊕ (Y, q,m) := (X ∪ Y, p⊕ q,m).
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Remark 3. There is a tensor product given by

(X, p,m)⊗ (Y, q, n) := (X × Y, p⊗ q,m+ n).

What it does on morphisms is not hard to explain but we don’t really have enough time. We define
1 := (Spec k, id, 0) and L := (Spec k, id,−1). We remark that 1 is the identity for the tensor product.

Remark 4. IfX and Y are of pure dimension d, e respectively, then given a correspondence α ∈ Corr0(X,Y )
we get an opposite correspondence tα ∈ Corrd−e(Y,X) and so a morphism

α : h(Y )→ h(X)⊗ Le−d.

This is really the reason we introduced the Lefschetz motive L

Remark 5. If X is irreducible of dim d with a rational point x ∈ X, then we find that

1→ h(X)

is a sub-object of h(X), denoted by h0(X) and

h(x)→ Ld

is a quotient object of d, denoted by H2d(X).

Remark 6. A cycle f ∈ Aj(X) corresponds to a map

1→ h(X)⊗ Lj ,

note that this is always a sub-object.

4 A universal Weil cohomology theory?

So far we have constructed a pseudo-abelian category Mot∼ and now we ’would like to show’ that it is a
universal Weil cohomology theory. In particular our category should be semi-simple abelian and all Weil
cohomology theories should factor through it. Given a Weil cohomology theory we would like to evaluate
it on motives by

H∗(X, p,m) = pH∗(X)[2m],

that is, we take the image of the idempotent p and shift it up 2m degrees (since Weil cohomology theories
take values in graded vector spaces). But what do we do with morphisms?

If f : X ` Y is a correspondence, then it definitely induces a map on cohomology, as discussed before.
However, we should get a map

Corr0
∼ → H∗(X × Y ),

and the axioms of Weil cohomology theories only guarantee this existence when ∼ is rational equivalence.
In particular, it is not known that all numerically trivial cycles are in the kernel of this map. Grothendieck
conjectured this fact and this is usually referred to as standard conjecture D.

Alright, so why don’t we just work with rational equivalence? Because the category Motrat is not an
abelian category! (at least when k is not contained in the algebraic closure of a finite field). Scholl [Sch]
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constructs an example of a morphisms with no kernel, using a non-torsion point on an elliptic curve. In
the case of finite fields, there is a folklore conjecture (cite Milne!)

We will see in the next section that Motnum is a semi-simple abelian category. However, without conjec-
ture D we do not know that this is a universal Weil cohomology theory. Moreover, even with conjecture
D we still don’t know much about this category. We expect that

H∗(X) =

2n⊕
i=0

H i(X)

and also the hard Lefschetz theorem to hold on the level of motives. This is only known for abelian
varieties (I think).

5 On numerical motives

Some things can be proven without the standard conjectures, and in 1991 a paper appeared which proved
some nice results with seemingly elementary methods.

Theorem 2 ([Jan92]). Let ∼ be an adequate equivalence relation and Mk the category of motives with
respect to ∼, then the following are equivalent:

(a) The category Mot∼(k) is abelian and semi-simple.

(b) For each smooth projective variety X, the ring homMk
(X,X) is a finite dimensional semi-simple

Q-algebra.

(c) The relation ∼ is numerical equivalence.

Proof. • (a⇒ c) Let f ∈ Ad(X) be a nonzero algebraic cycle corresponding to a morphism

1→ X ⊗ Ld

Since 1 is indecomposable, this morphism will have a section, which corresponds to a cycle

g ∈ AdimX−d(X)

such that 〈f, g〉 = 1. This means that f is not numerically equivalent to zero, so the given equivalence
relation is coarser than numerical equivalence, but numerical equivalence is the coarsest adequate
equivalence relation.

• (c ⇒ b) The fact that Chow groups modulo numerical equivalence are finite dimensional Q-vector
spaces is true in general (Find citation), so it remains to prove the semi-simplicity statement.

For a Q-algebra A that is Artinian (e.g. a finite dimensional vector space), semi-simplicity is
equivalent to having trivial Jacobson radical. For such rings, the Jacobson radical can also be
described as the largest two-sided nilpotent ideal. Therefore, our goal is to show that J(A) is zero
where

A = Corr0
∼(X,X).
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Let H∗ be a Weil cohomology theory (such as étale cohomology) and let ∼′ denote homological
equivalence for this Weil cohomology theory. Let Bj(X) denote cycle class group w.r.t. to ∼′ and
note that there is a surjection

Bj(X)→ Aj(X)

given by killing numerically trivial cycles (conjecturally, this is an isomorphism). Now the Lefschetz
trace formula tells us that for f, g ∈ BdimX(X ×X) we have

〈f,tg〉 =

2 dimX∑
i=0

(−1)i Tr(f ◦ g|H i(X)).

Now let f ∈ J(A. In order to show that it is zero, it suffices to show that 〈f,t g〉 = 0 for all g since
we are working with numerical equivalence. Let

S : B = Corr0
∼′ → A

be the surjection described above and note that S(J(B)) = J(A). Clearly we have S(J(B)) a
nilpotent two-sided ideal (since S surjective) and so it is contained in J(A). But J(A) is the
smallest ideal such that A/J(A) is semisimple and B/J(B) is also semisimple.

This means that we can lift f to an element f ′ ∈ J(B) and since J(B) is a twosided nilpotent ideal
we find that f ′ ◦ g is nilpotent for all g. This also implies that the image of f ′ ◦ g is nilpotent in
(the action on cohomology!)

EndH i(X)

and so it has trace zero! We conclude that

〈f,tg〉 = 0

which implies that f ′ = 0 and so f = 0 which shows that J(A) = 0 and A semi-simple.

• (b⇒ a) This is true more generality, so we will formulate it as a lemma. The fact that the hypothesis
of the Lemma hold for C = Mot∼(k) is not obvious. It follows from the fact that

hom((X, p,m), (X, p,m)) = pCorr0(X,X)p

and the fact that aRa is again a semi-simple ring of R semi-simple and a idempotent (is this even
true?)

Lemma 1 (Lemma 2 [Jan92]). Let C be a Q-linear, pseudo-abelian category such that EndC(M)
is a finite-dimensional, semi-simple Q-algebra for every object M of C. Then C is a semi-simple
abelian category.

Proof of Lemma 1. Since End(M) is a finite-dimensional and semi-simple Q-algebra, it is isomorphic to
a finite product of matrix algebras over skew-fields over Q. This means that indecomposable objects
are precisely the ones whose endomorphism algebra is a skewfield over Q. Moreover, every object is a
finite direct sum of indecomposables (because idempotents have images and kernels in pseudo-abelian
categories, and Wedderburn’s theorem gives us lots of idempotents).
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To show that the category is abelian, we have to show that two indecomposable objects M,N are either
isomorphic or homC(M,N) = 0. This means that any map between objects of our category will be build
up of endomorphisms of indecomposable objects (which will be simple) and zero maps, and that shows
that they have kernels and cokernels.

So let M,N be decomposable and assume that homC(M,N) 6= 0. Then we claim that the composition

homC(N,M)× homC(M,N)→ EndC(M)

is nonzero. Granting this claim for now, take (f, g) such that f ◦g 6= 0, then since EndC(M) is a skewfield,
the element f ◦ g is invertible and hence (fg)−1 ◦ f is an inverse of g. This means that g : M → N is a
monomorphism and since N is indecomposable it is an isomorphism.

Suppose that the claim is false, then(
0 0

homC(M,N) 0

)
⊂
(

EndC(M) homC(N,M)
homC(M,N) EndC(N)

)
= EndC(M ⊕N)

is a non-trivial nilpotent two-sided ideal (here we really need finite dimensionality!). But them it must
be contained in the Jacobson radical, which is trivial.

Corollary 1. Let k be a finite field (or contained in the algebraic closure of a finite field). Then the
category Motnum is a semi-simple Q-linear Tannakian category
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